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o Abstract

Lindstrom-Madden type approximations to the lover
confidence lipmit on the reliabilicty of a series systea
are theovetically justified by extending and simplify-
ing the results of Sudakov (1973). Applicactions are
nade to Johas (1976) and Winterbottom (1974).
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1. 1Introduction and Summary

A problem of fundamental interest to practitioners 1in
reliability is the statistical estimstion of the reliability of &
syetem using experimental data collected on subsystess. Ian this
paper, the subsystem data availabdle consists of a sequence of
Bernoulll triasls in which & "one" 1is recorded 1f the subsystes
functions and a zexo 1is recorded if the subsystea fails. Thus
for each of ‘the k subsystems composing the system, the data pro-
vided counsfets of the pair (nx.fi). 1=1,2,...k, where Y‘ is
binomially distridbuted (n‘.pt). He assume that 11.‘!2.....1k are
mutually fndependent random varfiables.

The magnitude of interest in this prollem 1is easfly evideanced
by the extensive literature devoted to it. In this regard, see
the survey paper by Harrise (1977) and Sectfon 10.4 of the book by
Mann, Schafer, and Siungpurwalls (1974). 1In sddition, the Defense
Advanced Research Projects Agency has recently issued a Handbook
for the Calculation of Lover Statisticsl Coanfidence Bounds on
System Reliability (1980).

Historically, the first significant vork on this problem uas
produced by Buehler (1957). However, Buehler's methnd as des-
cribed in that paper 1s difficult to fimplement computationally
when k;z.

We proceed by describing Buehler's method in Sectfon 2. Ia
Section 3 we specislize to series systems, that is, & system vhich
fails whenever at least one subsystem fails. Sudakov's (1974)
results are extended in Section 4 and employed to exhibit soame

optimality properties of the Lindstrom-Madden mechod (see Lloyd
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ard Lipow (1962)) for constructing lower confidence bounds for

the reliability of serses systems of stochastically indepeadent
subsystens. Some numerical exsmples are given im Sectioa 5 and
the results needed for this generalization of Sudakov®s Theorea

are provided ip the Appendix to this paper.

2. Buehler's Method for Lower Confidesnce Bounds

A systewm comnposed of k independent subsystems 1s ssid to be
a coherent system (with respect to the specified decomposition
icto subsystems), 1f the systen fails when 211 subsystems fail
and the system functiones when all subsystems fuaction; and veplac-
ing a defective subsysterz by a functioaning subsystem can uot
czuse a funcrtioning system to fail. Coherent systems are des-—
¢rited in Birabaum, Esary and Sauaders (1961) and Barlov and
®1o.chan (1975).

To any system one can associate a function, h(p) =
L(pl,pz.....pk). inifl. ie1,2,...,k, whexe h(p) is the rel;:btl-
Ly of the system vhen Py is the probabilicy thact the 153
suboystem functions. It is well-kanown that if the system is
coL«rent,

o< <1,
h(0,...,0) = 0, a(1,...,1) = 1 ,

zad h(pl.....pk) is non~decreasing in each variable.

For coherent systems, Buehler's method may be described as
follows: The observed outcome (yl"""k) can sssume any of
N = I (n

1=1 %
we denote no-y, by Xy i»1,2,...,k.

+1) values, siaoce P 0,1,...,n For coavenience,

'



i partition (Al,Az,....A.). s>1, of the ¥ possible outcoses
is said to be a monotomic partition, that 1is, A1<Az<...<4 if
{0,0,...,0) ¢ ‘1’ (nl.nz.....-k) € A. and 1f x1 - (’11"""1k)’

Pid (xZIf""‘Zk) with x,, < x,., 11,2,...,k, then ;l €Ay

implies X, € Age 302 1.

Let
. - . k -x, X k ¢n y -y
£(Z:p) = px(X=x) » W | ! Py ‘q“ - nft “q‘t 1 2.1)
P i=3 t=1{y,
and for 1 ¢ n < -1, let
P 1nf{h(p) £(%:P) = u} (2.2)
a eA‘.1<n

and a - 0.
Each such partition may be identified with a functiom defined oa

the set of sample outcomes by defining the ordering functioa

g(x), where

8(X) = n if x €A, 1fn<s; €2.3)

obviously gfx) inherits the monotonicity properties of the
partition.

Subsequently it will be convenient to use ordering fuactions
g(x) suct that the racge of 3(5) will be a fiuite set of real
numbers, r <tz<...<r‘. With no loss of generality, ve can identify

1

the sets A, by defining A, ~ {;];(i) - ti}. 1=1,2,...,8. We cam

i
ncw establish the following thecreas.

Theorem 2.1. Let X be distributed by (2.1). Then .‘(i) is 8
(1-¢) lower comnfidence bound for h(p). 1If bl(i) is also a (1-a)

lover confidence bound for h(p), then bifnl' 1<i<s.

Proof: Fix P and let n(P) be the smallest integer such that
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freminl '
P~ € U A >a 2.4
X Rt (2.4)
and
. s
r~{x € LU ‘1} > 1l-a . =.5)
P 1=a(p)
Let
D, = {pll’;{x . 1-1 } > a} 2.%)
Then Ds(i) is a 1l-a confidence set for p, since
Ps{p € Ds(i)} - P;{s(x) > n(P)} 2 l-a . (2.7)

Thi. establishce the firsc part of the conclusion. Further, since
n(f) is continuous sand o:plfl. the infizun 1a (2.2) is attained.

Now assume that i, 1is the smallest index such that b, >a, ,
1 11 11

1<i,<s-1. Then, for some 50. 51.

1
b, > m{hml I fGap = a} - 8 .
1 x eh <1, . .
and
)) £(%38,) > @, W(P,) < b, .
*¥1 » 1 i
xicAi.ifil 1
Therefore
g {rGp <3 )2 £(3:5)) > a.
Py 1 8(X) XA .54, 'L

2 contradiction.

Pemsrk. Let d_ = sup{l b(p)l f(iiai) - a}. Then 4_ 15 a

x eA1.1<n
(1-2) upper confidence bound for 1-h(p), the unrceliadilicy.

Let A = {§c£k. O<x <a,, 1-1.2.....k) and let g(xX) be contin-

uous on A (the closure of A) and strictly increasing ia szach
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variable for x€A. g(x) is to be regarded as an ordering function
88 described immcdiately praceding Theorem 2.1. We require the
following additional property of g(x).

Fix xotA. Let g(xo) < ;(31.0.....0) -2 Then
8(y;40,...,0) = g(§°) has a unique soluttom im y;. Proceeding
recursively, let 11 < Y, and defipe ¥y = ’2(‘1) as the solution
of g(x_)) = g(1;.,y, 0,...,0). For each 1<3<k and 1.1 S ¥5ge
11_2 < ’3-2""' 11 A Y1 let ’j - ’1‘11‘12"""3-1) be the

solution of
g(;o) - 3(11.12.....11_1.71.0....,o) . (2.8)
We require that the equations findicated ia (2.8) have

unique solutions for each ’J'

Then define

{y,1 7,1 iy, 1
FEap) = 1 I ... 1 f(hLip, (2.9
1,20 1,0 i,=0

where, for j>1, yj - yj(il.iz.....ij_l). Let

£°(3 :8) = sup F(EiP) . Ocacl. 2.10)
h(p)=a
Then we have
Theorem 2.2. 1If ;o satisfies 1nf f*(x ;a) = 0, sup f.(z ;a) = 1
O<a<l ° O<ac<l °

and f.(xo;u) 1% a strictly incressing function of s, and {f

;o € &, vhere g(x) determines (Al.Az.....A.). and 1f

b - 1nf{h(i)l I £(X,.5) - a} . (2.11)
1

xeA,,4<n
then we have

t.(iosb) -a.




'rocf: Siace the infisum is (2.11) 1s attained, there is & §

©
such that b = h(p ) and F(¥ :F,) = 6. Then £ (%,.b) 2 a. If

rk(io.b) > a, there exists 5‘. with a = h(i‘). a<b and
t‘(io;a) = @ coatradicting (2.11).

Obviously, the above discussion caa easily be modified to
sbtain upper confidence bounds on the unreliabilicty 1-h(p) by
replacing inf by sup in (2.11) and requiring that f.(io;a) be &

strictly decreasing function of &, 0<a<l,

3. Applications to Series Systems

k

For a series system h(p) = 1 Py- Further, throughout this
iwl

section we assunme that g(X) satisfies the conditfoans necessary to

Znsure that the solutions for Fyseveo¥y indicated in (2.8) are
usique. Then we have the following theorem.
k *
Taverum 3.1. If W(f) = I Py then 1nf £ (io;a) - Q,
« i=1 O<a<l
sup f (io.a) = 1 and f*(io;‘) 1s strictly increasing in a,,

O<a<l

whonever ;o - (xal""’xok) satisfies x < nj, 3=1,2,....k.

o3
Proof. Since h(p) = 1 1if and only if L P 1, 4=1,2,...,k, it
follows frome (2.1) that

lim sup F(io;i) -1 .

&+1 hip)=a

Sinilarly, h(p) = 0 1f and only 4if at least one Py - 0,
s

- x -5 - - - 1
dul,2,.00,ke Since F(xo,p) < P;{x£<n1} 1 P?{xi-ni} - 1 L P

we have

lin sup P(iozﬁ) -0 .
a+0 h(P)=a

-
To show that £ (ioza) is strictly fincceasing in e, consider

e ————- .
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~ L. ~ .=
0<a<b<]l and let P, " (Pll""'Pak) satisfy £ (xo;‘) - f(xo;").
Statlarly, lec 5, satisfy £7( ;b) = F(iiF,) . Lec
I = {11.12....,tr} be any non-enpty set of indices such that

Pay /s 1 and let I° be the remsining indices. Then

b
j(:)
(1 b 1/z I
P <) ) P -b . (3.1)
jel lij a JCIc ."

From the monotone likelihood ratio property of the binomial

distridbution,
£ 33 < ¥ =
(:ooP.) (xoo’ ) .

where the components of y. are given by (3.1). Then

F(R55%) € sup  F(EP) = FGRiRy) = £7(xib) -
bh(p)=b

4. Sudakov's Method
Let

- 1 P el s~1
xp(r.a) T3} Io [ (3-t) 4t .
Then 1f y is an integer, y<a, we have

&) ?n-‘ 1. I (n-y.y+1) .
i=0 % * »

For 9<y<n, resal, define u(a,y,a) by a = )(n-y.y*l)-

I‘l('n’oa
Thus, for integer values of y, u(n,y,a) 1s a 100(1-a) perceat

lower confidence limit for p. Sudakov (1973) showed that for
k

n,<a,<...<n, snd g(x) = A (m,-x,)

1-"2- -k fm1  Sle¥ S

u(n;.y;.0) € b < ula,,y,l.a) ,
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“(“l'yx'“) 18 called the Lindstron-Msdden method for determiaing
lover confidencs limits for the reliability of sexies systems
(sce Lloyd and Lipow (1962)).

Lipow and Riley (1959) used & diffarenc orderiag fumctiea;

n.vertheless they noted that for “small®™ a their tabulaced

4°
vulues provided good agreement with the results uwsiag the
Lindstrou~Madden method. For lasrge values of L IO the tabulated
values that ther provided are based oa the iLindstros-Madden
method. were we provide a further justificatiom for the
Lindistron-Madden method by establfshing that it provides comserva-
tive lower confidence linits (S.e. 1s & lover bound te b defined
ia (2.9)) using the ordering function g(x) empleysd by Sudakov

and we also obtainm an upper oound for b, thus detersiaiag the
possible error of the Lindstroa-Madden method.

Sudakov's proof is unnecessarily compliceted and comtains
soae incorrect assertions, which nevertheless d> mot affect the
validity of the conclusion. In the Appendix we provide s simpler
preaf of some auxilisry zesults needed for the gemeralization eof

Sudakov's theorem given below.

Theorem 4.1. Let g(k) satisfy the hypothesis of Theorem 3.1.

Then,

b min ula.iyglea) . “4.1)
1<i<k A

where b is given by (2.11) and y: - ’1(31"2“""1—1) is evaluated

at 1‘-0. 221,2,.0.,1x1. Mote that ”n- ,:. If we alse have



y,-1 y
41 ;111 . 3%1,2,...,k-1, (4.2)
3 7 3+1
then
“(nl"l'“) £b . {4.3)

Proof: (4.1) is ipmediate from (2.11) upom setting p’-l. 341 and

solviag F(X_ il,.--,1ep;sl,.2-51) = G. Recall that o) < n, € ... < &

and
ly,1
F(X i) = 1i_a bla,~1,:p,.0,)
1
{yg 41
“ee 1[ -0 b(nL-l"kv1=’k-1'“k-1)xpt('k~[’k=’!’kl+1) -(4.4)
k-1

Now, apply Lemmas Al, A2, and A3 to the fnnermost sum In (4.64), to ges

Iyy ;)
I bl g3y 3Py o8y )T, (mp-ly ). ly, )4D) <
1k_1-o k
(yy)
1 blay =1y 3P po®p )8, (B -7,y 42) <
S k
{y, ;1
LIC PR S NI TL MR LI LR (R T (UL R L0 Bt
1,10 k
Toyo?y k-1 k1 Tkt

Repeated applications of the adove establish that

P(x_:p) < I (n,-y,,7,+1) . (4.5)
x 1771°N

(4.3) follows immediately from (4.5), completing the proof.



TR T

o

i
i

P AT VR

Renuriks. If (4.3) holds and Yy is an integer, thea b = ‘('X"l’.)’

It his often been suggested (Lloyd and Lipow (1962),
Winterbottom (1974), Bolshev and Loginov({1966), Miraily and
Solov'yuv (1964)) that the confidence level should depend enly ea
ty the smallest sanple size. We now provide & aumerical illus-
tration to show that the bound in (4.1) may be improved by takiag
211 che ni's into consideration.

Let k=3, o=.1l, & = (10,12,30), £, = (0,3,0). Then fer
5{%) = r (ay-24), £(n;,0(y ).0) = .541, £(n,.{y,).0) ~ .525,
t(n?[ysitz) ® .639. The use of (4.3) establishes .500 <d < «525.

Note that 1f x . = @, for some 31, 1<i<k, cthen g(X) = O and
L«J. It seenms reasonable to use b=0 as the lover coaffdeace
liziz whenever x ,"n, for any monotone orderiag functiea sacisfy-
in; the conditions ¢f Section 2.

We now show that 4f g(x) = ; (n‘-x‘). thea (4.2) 1s satfis~
Ticd and Theorem 4.1 applies. 1::: result will extend a resmls
due to Winterbottom (1974), who established this fact for °
p~riicular special cases. In addition, we will also si.w that
(4.2) holds for a number of other orderiag fumctioss used in the

literazure.

k
ifcorem 4.2, Let g(X) = I (a ,-x +a,), wvhere a :> ad
B 2e2 Pt S M} 1

IR > LIPeL T i®1,2,..,,k~1l. Then (4.2) fe¢ satisfied.
Proof. If
k
(nt—ytﬂ‘)”l{*‘ (ngrag) = ¢
and

x
(Bykta,0(n,  17Y 341" 0g4)) B (=

a) - .
gotez 397 T €



then -+ have
(=Y 40,0y 3 4004q) = (K ta ) (my Y01 %ey) *

establishing

Yitky Y4y By (Bgte k)

o kg By By p¥eg ) mgmky)

Thus (4.2) holds if

LTS A et W U
(818540 (0 "k )

213

this last inequality will be true wvhenever B,41% > n‘+1n‘. In
particular, this £s valid when 01-0. 1 =1,...,k which is

Sudakov's ordexing functionm.

k
Theorem &4.3. 1If g(x) = 1 ~ z x1ln‘, then (4.2) 1s satisfied.

1=1
k y
Proof. If 1 - y,/o, = ¢ = 1 - —% . 441,00
——— 1°71 n‘ n1+1

Yeoke Y4
By 141

or

Yotk Y4
a,~-k

175 T By

iy

This type of oxderiang function has been employed by Paviov
(1973), for exanple.
H 2 3
Theorem 4.4. Let g(X) = ‘glu‘xt+za(.‘x‘) . where LA satisfies
1-0(:u) = g sand ¢(x) is the standerd mormal distribution function,
k
a2 8y 2-.-2 8y, and a; = (o, tglllni) 1 thea g(X) satisfiles

(4.2) 1f and only 1f



(aJ j+1)yj > (14 3+1)‘a+' k’ -a k (l . +2c~a (y,ftj)) - (4.6)
=2 3=1 2
troof: 1If g(x )eec+ I .‘k » then definiag z a‘k‘ * €30
1=} i=31
a,y, + 3, (c +a? y )‘ - c (4.7)
373 373
and
3
aij + ‘j+1’3+1 + 2, (c +‘jkj+‘j+1,j+1, =c . (4.8)

Lguating the left hand sides of (4.7) and (4.8), wve obtaia (4.6).
1£ ko2, (4.6) holds for all csses of istersst.

1f €4.6) holds, thea setting

1-0 = (P(x))"

It‘(x.l—c) x-1, ¢,
t .

[]

a straightforward limiting srguneant shows thatc
max a_ £([y l+1l,1-a) < b < a,f(y,¥1,1~-a) . (4.9)
3 1 i - -1 1

Tais ordering function has besa used by Johns (1976) and bein
{(4.7) 1is the value tabulated by Johns for k=2. The validity of
the lower bound does not depend on (4.6). In Table 1 below, the
lower and upper bounds given £p (4.9) ace tabulated aloag with
tn2 values given by Johns for a=.1., These refer to upper confi-~
duenge linits for the Poisson parameter combinstions ‘111*.2A1

Note in particular that three of the values tabulated by
Johas (indicated by asterisks) violate (4.9). Specifically ceasider
5.24, in which case (’1] - 5, siace ;‘(2.;) - 4.78, ;‘(5.0) - §.72
and g*(é,o) = 5.48. Using the Poisson approzimstios we obtaim the
value 9.275 for the upper conridence lisit to A fer a=.]l and thus

a A1+a2A2 = 5.56. Consequuntly the sup sust exceed 5.56. Aa



) I

alternative approach to the one suggested by Johns for k > 3 15 to

simply uss -1£(71+1.1~a) for b.

Table 1

Comparison of Upper and Lower Bounds
With Values Tabulated by Yohans for a=.l

N x x Lover Upper Johns'®
1 1 2 Bound Bound Tabled Value
.9 7 2 4.79 5.50 5.17
-9 3 (4] 2.07 2.27 2.16
.75 6 3 6.00 6.65 6.23
.75 12 3 7.90 8.29 7.91
.67 3 5.36 5.61 5.33e
.67 15 2 8.71 9.24 8.81
.60 S 2 5.56 5.62 S.24%
.60 7 6 9.26 9.53 9.18#

5. Numerical Examples and Concludiag Remarks

Examples 1 and 2 illustrate the method ve have descrited ia

this paper.

k
Example 1: Let H(X) = I (n1—x1). ce 05, k=5, 8-~
i=1
(20,30,40,25,60), x = (2,6,10,8,15). Then the 952 upper confi-

dence limit for the faflure probability is contained in (.86,.88).

Example 2: Let H(X) = I{n;-x,), & = .05, k = 2, & = (10,10),

X = (3,2). Then the 95% upper confidence limit for the faflure
probability is contsined in (.70, .73). The value given ia Lipow
and Riley (1959) 1s .70.

Remarks. In this paper we have showed that the lLindstrom-Madden

technique is counservative for orderimg fumctions satisfying (4.2).
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Furcher, if Yy is an iatcger, then the Lindstron-Maddes method 1is
exact. We have also relaxed the conditioas nceded f1a Winterbettom

{1974) and provided an alternative to the method of Johas (1976).

- e —— - —



Appendix

The auxiliary results employed 1in the proof of Theores 4.1

are provided here.

Lemma Al: I’(n—x.x+1). 0<y<l, is a decreasiag functions of n and
an increasing functicn of x. I’(ny,nq+l), ptq = 1, O<p<l, is an

increasing function of q.

Proof: The proof is imnediste from the observation that the

beta distribution with psrameters G snd B has monotone likelihood
ratio in a and -8 and that 3f & prodbadbility distritution has
monotone likelihood ratic in O, te(x) fe 3 decressing functiom

of 6 (Lehmann (1959), p. 68 and p. 74).

Y37k Yin

Leans A2: If — > and n, < n » thea
LY ki LFeY 1 1+1
T gy oyg=kytl) 2 T (B, Y 01 Vet - 1.1)

Proof: Revriting the left and right hand sides of (A.l1l) as

y‘-k1 1%
1, (n-k (1 - ;;:;;). (a,-& )( -k )41 2

Yia1 Yia2
1,[:;“1(1 - ;'“—l). 141 ¢ Ser y+1] , (A.2)

Lemns Al applies and the conclustion follows.

Lenma A3: Let ylyz -y, 05,151. f1=1,2. Then

[x])
1’1 (a-x,x+1) 2> kgo b(u-k;yl.nl)!’2(n—x.x-k+l) . (A.3)
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Froof:

L K T(a-ke)) {72 jo-x-1g, . x-k
1 Gy ) Fo) Tk ] . Q-s)" Tde
)

=0

() -y, v,y y -ty x-k
. F(n+1) 54 172 n-x-1 1
* Ta-x) xﬁo TR (x-k+1) I (—J ( ‘

n-x—l"l_‘)x-k

I(n+1) {’1’2 [f] (1-11) t

* Fla-x) ! Lo TRTGED de .

Thus (A.3) will hold whenever

T(n+l) ¥1Y2 n-x-1 x
T(a-x)F(x+1) I £ (1-£)"de 2
/]

k _n-x~1l x~k
I (a+1) Iylyz Ifl (A-yy) ¢ (y3-¢)
T(n-x) k=0 k! T(x-k+l)
0

dt [

or

I'(n+1) Y32 gpex-1 x
T(a-x)T (x+1) I € Qa-¢)
o

(x] rexend 2NV EY2TEVE g > 0 . a.4)
[1-ky° K (x-k+1) \1-¢c ) (1- ) ] -

Yyt 1’y1
Uriting - " ( -1

(1-c)>l—y1. we observe that (A.4) holds and the lemms is proved.

) and notiang that 0Lty y,<1, t<y, aand
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